If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+X^2=58
We move all terms to the left:
X^2+X^2-(58)=0
We add all the numbers together, and all the variables
2X^2-58=0
a = 2; b = 0; c = -58;
Δ = b2-4ac
Δ = 02-4·2·(-58)
Δ = 464
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{464}=\sqrt{16*29}=\sqrt{16}*\sqrt{29}=4\sqrt{29}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{29}}{2*2}=\frac{0-4\sqrt{29}}{4} =-\frac{4\sqrt{29}}{4} =-\sqrt{29} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{29}}{2*2}=\frac{0+4\sqrt{29}}{4} =\frac{4\sqrt{29}}{4} =\sqrt{29} $
| 0.04=4d/4+12 | | x-2-8=12 | | 3c-9=-9c+3 | | X^2-31u=0 | | 4+1/2t=34 | | -8-12x=13x-5+22 | | 6n+6=-8n-36 | | 4a^2-5a-35=9 | | 6m2−12=0 | | 8x2-32x2=0 | | -7x-16=20-3x | | 2(4x-7)+2x=136 | | 0=-16t^2+169 | | X^2+5w+6=0 | | 4×(x+1)=12 | | X^2-15h-16=0 | | 2(4x-7)x2x=136 | | x²=7,84 | | H^2-15h-16=0 | | -4(x)=1/2x-14 | | (4x-7)x2x=136 | | 7y=20=3y | | 7y=20=3 | | 17x-16+4=-46 | | (X-42)+(x)=90 | | 3p+4p-6p-p+3p=9 | | 8r-2r-5r=8 | | 12+11f=10f | | –5(s–7)=12 | | 2y+31=73 | | 5v+v+3v-v=16 | | 2x+10+60=90 |